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� In military applications, intumescent paints are commonly used as an IM 
technology to protect the munitions against fires (increasing the reaction 
time)

� Up to now plenty of experimental data but few numerical studies have 
been carried out to calculate heat transfer in the intumescent coated 
munitions

� To accurately calculate heat transfer in the intumescent coated munitions

� To predict the reaction time when coated munitions are faced with thermal 
aggressions such as fuel fires

� To get validated models from lab scale to the large one
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1D modeling of 1D modeling of intumescentintumescent coatings growth under coatings growth under 
high fluxhigh flux

Thermal modeling

Steps of the intumescent process under radiative heat flux

Test facilities in Odeillo: the Main Solar Furnace
(a 45 kW furnace with adjustable flux)
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Moving boundaries modeling

Boundary and initial conditions
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Flux and temperature continuity at the interfaces
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Test results and validation of the 1D model

Experimental test setup 

Kaleidoscope Thermocouple (K-Type)

Sample

Intumescent painting: 1 mm thick

Steel plate: 2 mm thick

Incident heat flux: 170 kW/m²

Back face temperature Reactive front 

Mass loss 

Upgrading the 1D model to a 3 dimensional domainUpgrading the 1D model to a 3 dimensional domain
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Numerical simulation of a large scale standard liquid fuel fire test (STANAG 4240 ed.2) using Fire Dynamics Simulator (NIST)

Intumescent coatings taken into account for these large scale simulations

To predict the reaction time of an intumescent coated Solid Rocket Motor 

Liquid Fuel Fire Test Facilities at CAEPELiquid Fuel Fire Simulation Comparison of results

� Numerical efforts on 2D and 3D modeling of intumescent coatings

Conclusion & Future WorksConclusion & Future Works

� Effect of ageing on intumescent coatings efficiency

� Experimental investigation about intumescent painting efficiency when deposed 
on composite materials [2] K. McGrattan et al., NIST Publication (2004).


